第133章 深探等差数列

文曲在古 戴建文 1725 字 3个月前

第 133 章 深探等差数列

在经历了梯形中位线和其他数学知识的传授与交流后,戴浩文决定在接下来的讲学中,引领学子们深入探索等差数列这个充满奥秘的数学领域。

这一日,阳光透过窗棂洒在学堂的地面上,戴浩文神色庄重地站在讲台上,看着台下一双双充满求知欲的眼睛,缓缓开口道:“诸位学子,今日我们将进一步深入探究等差数列之妙处。”

学子们纷纷挺直了腰杆,全神贯注地准备聆听戴浩文的讲解。

戴浩文在黑板上写下了一个等差数列的例子:“2,5,8,11,14……”,然后问道:“谁能说一说这个数列的公差是多少?”

一位学子立刻举手回答道:“先生,公差为 3。”

戴浩文点了点头,接着问道:“那它的通项公式又该如何表示呢?”

课堂上陷入了短暂的沉默,随后一位聪明的学子站起来说道:“先生,通项公式应为 an = a1 + (n - 1)d ,在此例中,a1 = 2,d = 3,所以通项公式为 an = 2 + 3(n - 1) 。”

戴浩文微笑着表示肯定:“不错。那我们来思考一下,如果已知等差数列的第 m 项和公差,如何求出首项呢?”

学子们纷纷拿起笔,在纸上开始计算和推导。

过了一会儿,一位学子说道:“先生,我觉得可以通过 am = a1 + (m - 1)d 这个式子变形求出首项 a1 。”

戴浩文鼓励道:“很好,那你具体说一说。”

学子接着道:“将式子变形为 a1 = am - (m - 1)d ,这样就可以通过第 m 项和公差求出首项了。”

戴浩文满意地说道:“非常正确。那我们再深入一些,若已知等差数列的前 n 项和 Sn ,以及项数 n 和公差 d ,如何求首项 a1 呢?”

这个问题显然更具难度,学子们陷入了深深的思考之中。

这时,一位平时就善于思考的学子站起来说道:“先生,我觉得可以先根据等差数列的前 n 项和公式 Sn = n(a1 + an) / 2 ,将 an 用通项公式表示出来,然后代入求解。”

戴浩文眼中露出赞赏之色:“思路很好,那你来给大家详细推导一下。”

学子走到黑板前,开始认真地推导起来:“因为 an = a1 + (n - 1)d ,所以 Sn = n(a1 + a1 + (n - 1)d) / 2 ,化简后得到 Sn = n[2a1 + (n - 1)d] / 2 ,进一步变形可得 2Sn = n(2a1 + (n - 1)d) , 2Sn = 2na1 + n(n - 1)d , 2a1 = (2Sn - n(n - 1)d) / n ,最终得出 a1 = (2Sn - n(n - 1)d) / 2n 。”

戴浩文带头鼓掌:“推导得非常精彩!那我们再来看一个实际应用的例子。假设一个等差数列的前 10 项和为 150 ,公差为 2 ,求首项。谁能来解一下?”

学子们纷纷埋头计算,不一会儿,一位学子举手说道:“先生,我算出来了。根据刚才推导的公式,a1 = (2×150 - 10×9×2) / 20 = 6 。”

戴浩文点了点头:“正确。那我们再思考一下,如果已知等差数列的前三项和为 12 ,且前三项的平方和为 40 ,如何求这个数列的通项公式呢?”